

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIWE full questions, choosing ONE full question from each module.

Module- 1

1 a. Find the Fourier series expansiom for the periodic function $f(x)$, if in one second $f(x)=\left\{\begin{array}{lr}0 ; & -\pi<x<0 \\ x ; & 0<x<\pi\end{array}\right.$.
(08 Marks)
b. Expand the function $f(x)=x(\pi-x)$ over the interval $(0, \pi)$ in half range Fourier cosine series. (06 Marks)
c. The following value ©f function y gives the displacement in inches of a certain machine part for rotations x of a flywheel. Expand y -in terms of Fourier series upto the second harmonic.

Rotations	x	0	$\pi / 6$	$2 \pi / 6$	$3 \pi / 6$	$4 \pi / 6$	$5 \pi / 6$	π
Displacement	y	0	9.2	14.4	17.8	17.3	11.7	0

(06 Marks)

OR

2 a. Find the Fourier series expansion for the function
$f(x)=\left\{\begin{array}{cc}\pi x ; & 0 \leq x \leq 1 \\ \pi(2-x) ; & 1 \leq \leq 2\end{array}\right.$
and deduce $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(08 Marks)
b. Expand in Faurier series $f(x)=(\pi-x)^{2}$ over the interval $0 \leq x \leq 2 \pi$.
(06 Marks)
c. The following table gives the variations of periodic aurrent over a period T .

t (secs)	0	$\mathrm{~T} / 6$	$\mathrm{~T} / 3$	$\mathrm{~T} / 2$	$2 \mathrm{~T} / 3$	$5 \mathrm{~T} / 6$	T
A (Amps)	1.98	1.30	1.0 s	1.30	-0.88	-0.25	1.98

Expamd the function (periodic current) by Fourier series and show that there is a direct current part of 0.75 arrp and also obtain amplitude of first harmonic.
(06 Marks)

Module-2

3 a. Find Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} ; & |x|<1 \\ 0 ; & |x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$.
(08 Marks)
b. Find Fourier Cosine transform of the function :
$f(x)=\left\{\begin{array}{cc}4 x ; & a<x<1 \\ 4-x ; & 1<x<4 \\ 0 ; & x>4\end{array}\right.$
(06 Marks)
c. Find z-transforms of : i) $a^{n} \sin n \theta$ ii) $a^{-n} \cos n \theta$.
(06 Marks)

OR

4 a. Find Fourier sine transform of $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{xx} \mid}$ and hence evaluate : $\int_{0}^{\infty} \frac{\mathrm{x} \sin \mathrm{mx}}{1+\mathrm{x}^{2}} \mathrm{dx}, \mathrm{m}>0$.
(08 Marks)
b. Find z -transform of $\mathrm{u}_{\mathrm{n}}=\cosh \left(\frac{\mathrm{n} \pi}{2}+\theta\right)$.
(06 Marks)
c. Solve the difference equation using z -tansforms $\mathrm{u}_{\mathrm{n}+2}+6 \mathrm{u}_{\mathrm{n}+1}+8 \mathrm{u}_{\mathrm{n}}=2^{n}$. Given $\mathrm{u}_{0}=\mathrm{u}_{1}=0$.
(06 Marks)

Module-3

5 a. If θ - is the acute angle Hetween the two regression lines relating the variables x and y, show that $\operatorname{Tan} \theta=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}{ }^{2} \sigma_{y}{ }^{2}}\right)$.
(08 Marks) Indicate the significance of the cases $\mathrm{r}= \pm 1$ and $\mathrm{r}=0$.
b. Fit a straiglt line $y=a x+b$ for the data.

x	12	15	21	25
y	50	70	100	120

(06 Marks)
c. Find a real root of the equation by using Newton-Raphson method near $x=0.5, \mathrm{xe}^{\mathrm{x}}=2$, perform three iterations.
(06 Marks)

OR

6 a. Compute the coefficient of correlation and equation of regression of lines for the data :

x	1	z	3	4	5	6	7
y	9	8	10	12	11	13	14

(08 Marks)
b. The Growth of an organism after x - hours is given in the following table :

x (hours)	5	15	20	30	35	40
y (Growth)	10	14	25	40	50	62

Find the best values off a and b in the forrrula $y=a e^{b x}$ to fit this data.
(06 Marks)
c. Find a real root of the equation $\cos x=3 x-1$ correct to three decimals by using Regula False position method, given that rœot lies in between 0.6 and 0.7 . Perform three iterations.
(06 Marks)

Module-4

7 a. Find $y(8)$ from $y(1)=24, y(3)=120, y(5)=336, y(7)=720$ by using Newton's backward difference interpolation fibrmula.
(08 Marks)
b. Define $f(x)$ - as a polynomial in x for the following data using Newton's divided difference formula.
(06 Marks)

x	-4	-1	0	2	5
$\mathrm{f}(\mathrm{x})$	1245	33	5	9	1335

c. Evaluate the integral $\mathrm{I}=\int_{0}^{6} \frac{\mathrm{dx}}{4 \mathrm{x}+5}$ using Simpson's $\frac{1}{3}$ rd rule using 7 ordinates.
(06 Marks)

OR

8 a. For the following data calculate the differences and obtain backward difference interpolation polynomial. Hence find $f(0.35)$.
(08 Marks)

x	0.1	0.2	$\AA .3$	0.4	0.5
$\mathrm{f}(\mathrm{x})$	1.40	1.56	1.76	2.0	2.28

b. Using Lagrange's interpolation find y when $\mathrm{x}=10$.

x	5	6	9	11
y	12	13	14	16

(06 Marks)
c. Evaluate $\int_{0}^{1} \frac{\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$ by Weddle's rule considering seven ordinates.
(06 Marks)

Module-5

9 a. Verify the Green's theorem in the plane for $\int_{C}\left(x^{2}+y^{2}\right) d x+3 x^{2} y$ dy where $C-$ is the circle $x^{2}+y^{2}=4$ traced in positive sense.
(08 Marks)
b. Evaluate $\int_{C}(\sin z \cdot d x-\cos x d y+\sin y d x)$ by using Stokes theorem, whera $C-$ is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1$ and $z=3$.
(06 Marks)
c. Find the curve on which the functional : $\int_{\mathbb{C}}\left[y^{\prime 2}+12 x y\right] d x$ with $y(0)=0, y(1)=1$ can be extremised.
(06 Marks)

OR
10 a. Given $\mathrm{f}=\left(3 \mathrm{x}^{2}-\mathrm{y}\right) \mathrm{i}+\mathrm{xz}+(\mathrm{y} \mathrm{z}-\mathrm{x}) \mathrm{k}$ evaluate $\int_{\mathrm{c}} \mathrm{f} \cdot \mathrm{dr}$ from $(0,0,0)$ to $(1,1,1)$ along the paths $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ and $\mathrm{z}=\mathrm{t}^{3}$.
(08 Marks)
b. Derive Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
(06 Marks)
c. Prove that the shortest distance between two points in a plane is a straight line.
(06 Marks)

17EC32

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Electronic Instrumentation
Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, chousing ONE full question from each module.

Module-1

1 a. Define the following terms:
i) Accuracy and precision
ii) Grass error and systematic error.
(06 Marks)
b. Draw the block diagram of a true RMS volt meter and explain its operation. (07 Marks)
c. Calculate series connected multiplier resistance with a D'Arsonval movement with an internal resistarce of 50Ω and full scale deflection current of 2 mA in to a multi range d.c. voltmeter with range from $0-10 \mathrm{~V}, 0-50 \mathrm{~V}, 0-100 \mathrm{~V}$ and $0-250 \mathrm{~V}$.
(07 Marks)

OR

2 a. Stata different types of thermocouple used for RF current measurement and explain each one of them in brief.
(07 Marks)
b. Sketch and explain the operation of a Multirange Ammeter and Aryton shunt. (07 Marks)
c. The expected value of the voltage across a resister is 75 V , But measurement gives a value of 74 V , calculate:
i) Absolute error
ii) \% error
iii) Relative accuracy and
iv) $\%$ of ac@uracy.
(06 Marks)

Module-2

3 a. Descrite with a diagram the eperation of a successive approximation type DVM.
(07 Marks)
b. Explain with a diagram the working of digital pH meter.
(07 Marks)
c. A $41 / 2$ digits DVM is used for voltage measurements. Find:
i) Resolution
ii) How would 67.50 V be displayed on 5 V range
iii) How would 0.716 V be displayed on 10 V range. (06 Marks)

OR

4 a. Describe with the help of a diagram the operation of universal counter. (07 Marks)
b. Explain with Block diagram digital phase meter operation.
(06 Marks)
c. With the block diagram, explain the digital frequency meter.
(07 Marks)

Module-3

5 a. Draw the basic block diagram of a oscilloscope and explain the function of each block.
(08 Marks)
b. Sketch the block diagram and explain AF Sine and square wave generator. (07 Marks)
c. Discuss the important features of Cathode Ray Tube (CRT).
(05 Marks)

OR

6 a. With block diagram, explain the working of DSQ and list the advantages of it. (08 Marks)
b. Explain the function generator with suitable diagram. (07 Marks)
c. Discuss frequency measurement with Lissajous figure.
(05 Marks)

Module-4

7 a. With circuit diagram, explain Q-meter and mention its application.
(06 Marks)
b. Draw the circuit of a Wheatstone's bridge and explain how it can be used to measure unknown resistance.
(06 Marks)
c. Draw the circuit diagram and obtain the balance condition for Maxwell's bridge. If bridge contents are $\mathrm{C}_{1}=0.5 \mu \mathrm{~F}, \mathrm{~K}_{1}=1200 \Omega, \mathrm{R}_{2}=700 \Omega$ and $\mathrm{R}_{3}=300 \Omega$ find resistance and inductance of the coil.

OR

8 a. What is Meggar? Explain the basic Meggar circuit.
(08 Marks)
b. With neat diagnam, explain the working of Wien's bridge? How it can be used as oscillator. (08 Marks)
c. A capacitance comparison bridge is used to measure a capacitive impedance at a frequency of 2 kHz the bridge constants at balance are $\mathrm{C}_{3}=100 \mu \mathrm{~F}, \mathrm{R}_{1}=10 \mathrm{~K} \Omega, \mathrm{R}_{2}=50 \mathrm{~K} \Omega$ and $R_{3}=100 \mathrm{~K} \Omega$. Find the equivalent series circuit of the unknown impedance.
(04 Marks)

Module-5

9 a. List the factors to be considered while selecting transducers.
(06 Marks)
b. Explain principle operation of resistive position transducer. (06 Marks)
c. Derive an expression far gauge factor for Banded resistance wire strain gauges.
(08 Marks)

OR

10 a. Explain the construction and operation of LVDT show the characteristic curve.
(08 Marks)
b. Explain Piezoelectric transducer.
(06 Marks)
c. Explain semiconductor photo diode and photo transistor.
(06 Marks)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019

Analog Electronics

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an expression for input impedance, output impedance, voltage gain and current gain of un bypassed RE common emitter amplifier using r_{e} model.
(10 Marks)
b. For the network of Fig.Q1(b), determine: i) r_{e} ii) Z_{i} iii) $Z_{0},\left(r_{0}=\infty \Omega\right)$ iv) $A_{v}\left(r_{0}=\infty \Omega\right)$ v) the parameters of parts ii through iv if $r_{0}=50 \mathrm{~K} \Omega$ for $\mathrm{R}_{1}=56 \mathrm{~K} \Omega, \mathrm{R}_{2}=8.2 \mathrm{~K} \Omega$, $\mathrm{C}_{1}=10 \mu \mathrm{f}, \mathrm{C}_{2}=10 \mu \mathrm{f}, \mathrm{R}_{\mathrm{E}}=1.5 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{E}}=20 \mu \mathrm{f}, \mathrm{R}_{\mathrm{C}}=6.8 \mathrm{~K} \Omega, \beta=90$ and $\mathrm{V}_{\mathrm{CC}}=22 \mathrm{~V}$.
(10 Marks)

Fig.Q1(b)
OR
2 a. Derive an expression of input impedance, output impedance, voltage gain and current gain of fixed bias CE amplifier using h-parameter.
(10 Marks)
b. Determine $r_{e}, h_{f e}, h_{i e}, Z_{i}, Z_{0}, A_{V}$ and A_{i} for the circuit shown in Fig.Q2(b) using hybrid equivalent model.
(10 Marks)

Fig.Q2(b)

Module-2

3 a. Explain the working principle of JFET, and explain the transfer characteristics of JFET.
(08 Marks)
b. Derive an expression for input impedance, output impedance, voltage gain and current gain of fixed bias FET amplifier.
c. Distinguish between JFET and MOSFET.

OR

4 a. With neat diagram explain construction and working principle of n-channel depletion type MOSFET.
(10 Marks)
b. Derive an expression for input impedance, output impedance and voltage gain of common Gate FET amplifier.
(10 Marks)

Module-3

5 a. Derive an expression for low frequency response of BJT amplifier due to capacitors $\mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\mathrm{E}}$ and C_{C}.
(10 Marks)
b. Determine the lower cutoff frequency for the network of Fig.Q5(b) using the following parameters $\mathrm{C}_{\mathrm{i}}=10 \mu \mathrm{f}, \mathrm{C}_{\mathrm{E}}=20 \mu \mathrm{f}, \mathrm{C}_{\mathrm{C}}=1 \mu \mathrm{f}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{R}_{1}=40 \mathrm{~K} \Omega, \mathrm{R}_{2}=10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=2 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{C}}=4 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} \Omega, \beta=100, \mathrm{r}_{0}=\infty \Omega$ and $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$, plot the response.
(10 Marks)

Fig.Q5(b)
OR
6 a. Define Miller's theorem, determine equivalent input and output capacitances of the circuit.
(10 Marks)
b. Determine the lower cutoff frequency for the network of Fig.Q6(b) using the following parameters. $\mathrm{C}_{\mathrm{G}}=0.01 \mu \mathrm{f}, \mathrm{C}_{\mathrm{C}}=0.5 \mu \mathrm{f}, \mathrm{Cs}_{\mathrm{S}}=2 \mu \mathrm{f}, \mathrm{R}_{\mathrm{Sig}}=10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega, \mathrm{R}_{0}=4.7 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{S}}=1 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{DSS}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=-4 \mathrm{~V}, \mathrm{r}_{\mathrm{d}}=\infty \Omega, \mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GSQ}}=-2 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DQ}}=$ 2 mA . Plot the frequency response.
(10 Marks)

Fig.Q6(b)

Module-4

7 a. Determine input resistance and output resistance of voltage shunt feedback amplifier.
b. Determine the voltage, input and output impedance with feedback for voltage series feedback having $A=100, R_{i}=10 \mathrm{~K} \Omega$ and $R_{0}=20 \mathrm{~K} \Omega$ for feedback of i) $\beta=0.1$ ii) $\beta=0.5$,
c. Explain the characteristics of negative feedback amplifier.

OR

8 a. What is Barkhasen criteria for sustained oscillation? Explain basic principle of operation of oscillators.
(08 Marks)
b. Explain the working of Wein bridge oscillator. Write the equation for frequency of oscillations.
(08 Marks)
c. For the colpitts oscillators, $\mathrm{C}_{1}=0.005 \mu \mathrm{f}, \mathrm{C}_{2}=0.01 \mu \mathrm{f}, \mathrm{L}=100 \mu \mathrm{H}, \mathrm{L}_{\mathrm{PFc}}=0.5 \mathrm{mH}, \mathrm{C}_{\mathrm{C}}=10 \mu \mathrm{f}$ and $\mathrm{h}_{\mathrm{fc}}=110$.
i) Calculate frequency of oscillation
ii) Check the condition for oscillation is satisfied.

Module-5

9 a. Explain the operation of transformer coupled class - A power amplifier and show that the maximum percentage efficiency is 50%.
(07 Marks)
b. Explain with neat circuit diagram, the working of a complementary symmetry class -B amplifier.
(07 Marks)
c. Derive an expression for second harmonic distortion using 3 - point method.
(06 Marks)

OR

10 a. Define voltage regulator. Explain the operation of series regulator circuit.
b. Explain the operation of shunt regulator using OP-Amp with neat circuit diagram. (07 Marks)
c. Calculate the output voltage and Zener current in the regulator circuit of Fig.Q10(c) for $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{z}}=12 \mathrm{~V}, \mathrm{R}=220 \Omega, \mathrm{~V}_{\mathrm{i}}=20 \mathrm{~V}$ and $\beta=50$.
(06 Marks)

Fig.Q10(c)

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
 Digital Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.
Module-1
1 a. Convert $\mathrm{x}=\overline{\mathrm{a}} \mathrm{b}+\mathrm{bc}$ to canonical SOP form.
(02 Marks)
b. Simplify $\mathrm{G}=\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\pi \mathrm{M}(1,3,8,10,12,13,14,15)$ in $\mathrm{P}(\square \mathrm{S}$ form and implement using NOR gates.
(08 Marks)
c. Simplify the following using Quine-McClusky's minimization technique. $V=f(a, b, c, d)=\sum m(1,3,4,5,6,9,11,12,13,14)$
(10 Marks)

OR

2 a. Convert $\mathrm{P}=(\overline{\mathrm{W}}+\mathrm{x})(\mathrm{y}+\overline{\mathrm{z}})$ to canonical POS form.
(03 Marks)
b. Simplify $\mathrm{P}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(2,3,4,5,13,15)+\sum \mathrm{d}(8,9,10,11)$ in SOP form and implement using NAND gates.
(07 Marks)
c. Simplify using Quine-McClusky.'s minimization technique:

$$
\mathrm{V}=\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\sum \mathrm{m}(1,5,7,9,13,15)+\sum \mathrm{d}(8,10,11,14)
$$

(10 Marks)

Module-2

3 a. Implement $\mathrm{f}_{\mathrm{l}}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(1,3,5) ; \mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\sum \mathrm{m}(0,1,6)$ using 74138, 3:8 decoder.
(06 Marks)
b. With a neat circuit diagram explain the carry look ahead adder with relevant expressions.
(10 Marks)
c. Design a one-bit comparator, implement using suitable gates.
(04 Marks)

OR

4 a. Using 74151, 8:1 Mux, realize the Boolean funation $F(a, b, c, d)=\sum m(0,1,5,6,7,10,15)$ with b, c, d as select lines.
(04 Marks)
b. With neat circuit diagram, explain the keypad interface using 74147, 10 line to $B C D$ encoder.
(10 Marks)
c. Design a full subtractor and implement using logic gates.
(06 Marks)

Module-3

5 a. Discuss the working principle of Gated SR latch with its truth Table.
(06 Marks)
b. Explain the operation of Switoh debouncer built using SR latch with the help of circuit and waveforms.
(08 Marks)
c. Obtain the characteristic equations of JK flip flop and SR flip flop.
(06 Marks)

OR

6 a. What is race around condition? How it can be overcome?
(02 Marks)
b. Explain the warking of MS-JK flip flop with logic symbol and timing diagram.
(10 Marks)
c. Explain the working of + ve edge triggered D flip flop with the functional table.
(08 Marks)

Module-4

7 a. Explain the working of four bit ripple counter using + ve edge triggered T flip-flops with the counting sequence table and timing diagram.
(10 Marks)
b. Explain the SIPO and SISO operation of shift register with relevant logic diagram and the truth table.
(06 Marks)
c. Explain the operation of ring counter using løgic diagram and truth table.
(04 Marks)

GR

8 a. Explain Universal Shift Register with the help of logic diagram and mode control table.
(10 Marks)
b. Realize a three-bit binary synchrønous up counter using JK flip flops.
(10 Marks)

Module-5

9 a. Construct a Mealy state diagram that will detect input sequence 10110 , when input pattern is detected Z is asserted high. Write the state diagram.
(10 Marks)
b. Design a synchronows counter using T flip flops to count the sequence $0,2,3,6,5$, $1,0,2, \ldots$ Write the excitation table and state diagram and logic diagram.
(10 Marks)

OR

10 a. Explain Mealy and Moore model of clocked synchronous sequential circuit with the block diagram.
(08 Marks)
b. For the logic diagram given in Fig.Q10(b):
i) Derive the excitation and output equations
ii) Write the state equations
iii) Construct transition table and state table
iv) Draw the state diagram

Fig.Q10(b)
(12 Marks)

USN

17EC35

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Network Analysis

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Reduce the Network shown in Fig Q1(a) to a single voltage source in series with a resistance using source shift and source transformation.
(07 Marks)
b. Use mesh analysis to determine the three mesh currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} in the circuit show in Fig Q1(b).
(05 Marks)
c. Find current in 30Ω resistor using nodal analysis for the circuit shown in Fig Q1(c).
(08 Marks)

Fig Q1(a)

Fig Q1(b)

Fig Q1(c)

OR

2 a. Find the equivalent resistance between a and b using star delta transformation for the network shown in Fig Q2(a).
(05 Marks)
b. For the circuit shown in Fig Q2(b), determine I_{x} and other loop currents.
(07 Marks)
c. For the circuit shown in Fig Q2 (c), determine all node voltages.
(08 Marks)

Module-2

3 a. For the circuit shown in Fig Q3(a), find the current I_{x} using super position theorem.
b. Verify Reciprocity theorem by calculating 'I' for the network shown in Fig Q3(b). (05 Marks)
c. Obtain the Thevenin's equivalent of the circuit shown in Fig Q 3(c)
(08 Marks)

17EC35

OR
4 a. For the circuit shown in Fig $Q 4(\mathbb{m})$, find the current in $(6+j 8) \Omega$ impedance using Millman's theorem.
(05 Marks)
b. For the Network shown in Fig Q4(b), determine Nortan's equivalent across A and B. Find the current thorough the impedance $(6-j 8) \Omega$ conneoted to the terminals A and B. (05 Marks)

Fig Q4(a)

Fig Q4(b)
c. State and prove maximum powar transfer theorem fon $A C$ circuit, where both R_{L} and X_{L} are varying.
(10 Marks)

Module-3

5 a. In the Network shown in Fig Q5(a), a steady state is reached with the switch K open. At $t=0$, the switch K is closed. Obtain the initial values of (i) $i_{l} \quad$ (ii) $i_{2} \quad$ (iii) $v_{c} \quad$ iv) $\frac{d i_{1}}{d t}$ v) $\frac{\mathrm{di}_{2}}{\mathrm{dt}}$ and $\frac{\mathrm{di}_{\mathrm{I}}}{\mathrm{dt}}$ at $\mathrm{t}=\infty$.
(10 Marks)
b. For the given circuit in Fig Q5(b), find the value of the loop currents, their first derivatives and their $2^{\text {nd }}$ derivatives, all evaluated at $t=0^{+}$, given that $\mathrm{V}_{\mathrm{c}}\left(0^{-}\right)=1$ volt, $\mathrm{i}_{2}\left(0^{-}\right)=0 \mathrm{amp}$. At $t=0, s w_{1}$ and $s w_{2}$ are closed.
(10 Marks)

Fig Q5(a)

Fig Q5(b)

OR

6 a. In the circuit off Fig Q6(a), the source voltage is $\mathrm{v}(\mathrm{t})=50 \sin 250 \mathrm{t}$. Using Laplace transforms, determine the current when switch K is closed at $t=0$.
b. Synthesiza the periodic waveform shown in Fig Q6(b) and find its Laplace transform and prove any formula used.
(12 Marks)

$$
2 \text { of } 4
$$

Fig Q6(a)

Fig Q6(b)

Module-4

7 a. Show that resonant frequency of series resonant circuit is equal to the geometric mean of two half power frequencies.
(05 Marks)
b. A coil is connected in series with a variable capacitor across $\mathrm{v}(\mathrm{t})=10 \cos 1000 \mathrm{t}$. The current is maximum when $\mathrm{c}=10 \mu \mathrm{~F}$. When $\mathrm{C}=12.5 \mu \mathrm{~F}$, the current is 0.707 times the maximum value. Find L, R, and Q of the coil.
(08 Marks)
c. A coil has resistance off 400Ω and inductance of $318 \mu \mathrm{H}$. Find the capacitance of capacitor which when connected in parallel with the oil will produce resonance with a supply frequency of 1 MHZz . If a second capacitor of capacitance 23.42 pF is connected in parallel with the first capacitor, find the frequency at which resonance will occur.
(07 Marks)

OR

8 a. Derive the expression for the resonant frequency of the circuit shown in Fig Q8(a). Also show that the circuit will resonate at all frequencies if $R_{L}=R_{\varepsilon}=\sqrt{\frac{L}{C}}$.
(12 Marks)

Fig Q8(a)
b. A coil of 10Ω resistance 0.2 H inductance is connected in parallel with a variable condenser across $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine: (i) Capacitance of condenser so that current drawn may be in phase with the supply voltage (iii) Effective impedance of the circuit (iii) Power absorbed at resonance (iv) Current magnification factor.
(08 Marks)

Modules

9 a. Z-parameters of a Network are obtained from an experiment. Explain how y-parameters and transmission parameter can be computed from the experimental data.
(10 Marks)
b. Find Z and Y parameters of the network shown in Fig Q9(b).

Fig Q9(b)
(10 Marks)

OR

10 a. Find Z and h-parameters for the network shown in Fig Q10(a).

Fig Q10(a)
b. Write a note on hybrid η 's with its equivalent circuit.
c. Explain symmetry and reciprocal property of 2-gort Networks.

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
 Engineering Electromagnetics

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's law in complete form.
(06 Marks)
b. Two particles having charges 2 nc and 5 nc are spaced 80 cm apart. Determine the $\overline{\mathrm{E}}$ at a point is situated at a distance of 0.5 m from each of the two particles. Use $\varepsilon r=5$. (Use Bakelite medium).
(06 Marks)
c. Identical point charges of $3 \mu \mathrm{c}$ are located at the four corners of the square of 5 cm side, find the magnitude of the force on any one charge?
(08 Marks)

OR

2 a. Derive expression for E due to infinite line charge from first principle.
(08 Marks)
b. Two uniform line charges of density $4 \mathrm{nc} / \mathrm{m}$ and $6 \mathrm{nc} / \mathrm{m}$ lie in $\mathrm{x}=0$ plane at $\mathrm{y}=+5 \mathrm{~m}$ and -6 m respectively. Find E at $(4,0,5)^{\mathrm{m}}$.
(06 Marks)
c. Define E and D, Hence establish the relation between D and E.
(06 Marks)

Module-2

3 a. State and prove Gauss divergence theorem.
(06 Marks)
b. If $D=\frac{5 r^{2}}{4} \hat{a}_{r} c / m^{2}$. (in spherical system) then evaluates both sides of the divergence theorem for the volume enclosed by $\mathrm{r}=4 \mathrm{~m}$, and $\theta=\pi / 4$ radians.
c. Prove that $\rho_{v}=\nabla \cdot D$.
(06 Marks)

4 a. Establish relation $E=-\nabla V$
(06 Marks)
b. Electrical potential at an arbitrary point in free space is given as $\mathrm{V}=(\mathrm{x}+1)^{2}+(\mathrm{y}+2)^{2}+(z+3)^{2}$ Volts at $p(2,1,0)$. Find :
i) V
ii) $\overline{\mathrm{E}}$
iii) $|\overline{\mathrm{E}}|$
iv) $|\overline{\mathrm{D}}|$
v) ρ_{v}
(08 Marks)
c. Derive continuity of current equation.
(06 Marks)

Module-3

5 a. Derive Laplace and Poisson's equations and write Laplace Equation in all 3 co-ordinate systems.
b. State and prove uniqueness theorem.
c. Calculate the numerical values for V and ρ_{v} at P in free space if $\mathrm{V}=\frac{4 \mathrm{yz}}{\mathrm{x}^{2}+1}$ at $\mathrm{P}(1,2,3)$.
(05 Marks)

OR

6 a. An assembly of two concentric spherical shells is considered. The inner spherical shell is at a distance of 0.1 m and is at a potential of 0 volts. The outer spherical shell is at a distance of 0.2 m and at a potential of 100 V . The medium between them is a free space. Find $\overline{\mathrm{E}}$ and $\overline{\mathrm{D}}$ using spherical co-ordinate system.
b. State and prove Ampers circuital law.
c. At a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ the components of vector magnetic potential $\overline{\mathrm{A}}$ are given as
$A x=4 x+3 y+2 z$
$A y=5 x+6 y+3 z$ and
$A z=2 x+3 y+5 z$
Determine $\overline{\mathrm{B}}$ at point P and state its nature.
(06 Marks)

Module-4

7 a. Derive an expression for the force on a differential current element placed in a magnetic field and deduce the result for straight conductor in a uniform magnetic field.
(08 Marks)
b. A point charge $\mathrm{Q}=18 \mathrm{nc}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction
$\bar{a}_{v}=0.6 \hat{a}_{x}+0.75 \hat{a}_{y}+0.3 \hat{\mathrm{a}}_{z}$.
Calculate the magnitude of the force exerted on the charge by the field
i) $\overline{\mathrm{E}}=-3 \hat{a}_{\mathrm{x}}+4 \hat{\mathrm{a}}_{y}+6 \hat{\mathrm{a}}_{z} \mathrm{Kv} / \mathrm{m}$
ii) $\overline{\mathrm{B}}=-3 \hat{\mathrm{a}}_{x}+4 \hat{\mathrm{a}}_{y}+6 \hat{\mathrm{a}}_{z} \mathrm{MT}$
iii) $\overline{\mathrm{B}} \& \overline{\mathrm{E}}$ acting together.
(06 Marks)
c. State and explain Lorentz force equation.
(06 Marks)

OR

8
a. Define : i) Magnetization ii) Permeability.
(04 Marks)
b. If $\overline{\mathrm{B}}=0.05 \times \hat{a}_{y} \mathrm{~T}$ in a material for which magnetic susceptibility $\mathrm{X}_{\mathrm{m}}=2.5$. Find
i) μ_{r}
ii) μ
iii) $\overline{\mathrm{H}}$
iv) \bar{M}
v) \bar{J}
vi) \bar{J}_{b}
(08 Marks)
c. Discuss the boundary conditions at the interface between two media of different permiabities?
(08 Marks)

Module-5

9 a. Derive Maxwell's Equations in point form and Integral form for Time varying fields.
b. For a lossy dielectric $\sigma=5 \mathrm{~s} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1$ the electric filed intensity is $\mathrm{E}=100 \sin 10^{\text {(08 Marks) }} \mathrm{t}$. Find J_{c} and J_{d} and frequency at which both have Equal Magnitudes.
(04 Marks)
c. Starting from Maxwell's Equation Derive the wave equation for a uniform plane wave travelling in free space.
(08 Marks)

OR

10 a. State and prove Poynthing theorem.
(08 Marks)
b. Deduce the expressions for α and β for a uniform plane wave propagation in good conducting medium.
(06 Marks)
c. Wet Marshy soil is characterized by $\sigma=10^{-2} \mathrm{~s} / \mathrm{m}, \varepsilon_{\mathrm{r}}=15$ and $\mu_{\mathrm{r}}=1$. At the frequencies $60 \mathrm{~Hz}, 1 \mathrm{MHz}, 100 \mathrm{MHz}$ and 10 GHz indicate whether the soil may be considered a conducting dielectric or neither.
(06 Marks)
USN
प प| | ||

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019
Constitution of India, Professional Ethics and Human Rights (CPH)
(COMMON TO ALL BRANCHES)
Time: 2 hrs.]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictly prohibited.
6. Good works mean
a) Superior work done with great care and skill
b) Responsible work
c) Work above and beyond the call of duty
d) Work involving high risk.
7. Engineering profession is considered to be like a building, its foundation is
a) Hard and sincere work
b) Expert engineering knowledge and skill
c) Sound common sense and expert knowledge
d) Honesty
8. In engineering research work, cooking means
a) Boiling under pressure
b) Retaining only those results which fit the theory
c) Making deceptive statements
d) Misleading the public about the quality of the product
9. Engineering Ethics is a
a) Preventive ethics
b) Natural ethics
c) Technical ethics
d) Scientifically developed ethics
10. The author of a book retains the copy right for \qquad after his or her death.
a) 20 years
b) 30 years
c) 60 years
d) 10 years
11. The public is put to increased risk by allowing increased number of deviations from specified standards of safety and acceptable risk is known as
a) Normal accident
b) Normalizing deviance
c) Risk assessment
d) Overestimated risk.
12. The Election Commission of India does not conduct election to
a) The Parliament
b) The office of the President
c) The post of Prime Minister
d) The office of the Vice President
13. What is the tenure of the Chief Election Commissioner and other election commissioners?
a) 3 years or upto 62 years of age
b) 5 years or upto 65 years of age
c) 6 years or upto 65 years of age
d) 5 years or upto 70 years of age
14. The procedure for amending the Indian Constitution is detailed under
a) Art. 356
b) Art. 360
c) Art. 366
d) Art. 368
15. Art. 21 A - Right to Education as a Fundamental Right was added to the Indian constitution by
a) $61^{\text {st }}$ Constitution Amendment
b) $74^{\text {th }}$ Constitution Amendment
c) $86^{\text {th }}$ Constitution Amendment
d) $91{ }^{\text {st }}$ Constitution Amendment
16. When the State Emergency is in operation, the President cannot interfere in the matters of
a) State Judiciary
b) State Executive
c) State Legislature
d) All of these.
17. While Proclamation of National Emergency is in operation, the President cannot suspend certain Fundamental Rights. These are
a) Art. 14 and Art. 15
b) Art. 14 and Art. 16
c) Art. 20 and Art. 21
d) Art. 32
18. B. P. Mandal commission appointed in 1978 by the President of India dealt with
a) Rights of the minority
b) Laws relating to child labour
c) Laws relating to sexual harassment at work places
d) Reservation for other backward classes (OBC) people in Government Jobs.
19. Who are considered to be vulnerable group?
a) Women and children
b) Scheduled Caste people
c) Scheduled Tribe people
d) All of these
20. Who can be appointed as the Chairman of the National Human Rights Commission?
a) Any sitting judge of the Supreme Court
b) Any retired Chief Justice of the Supreme Court
c) Any person appointed by the President
d) Retired Chief Justice of any High Court
21. National Human Rights commission is a
a) Statutory body
b) Constitutional body
c) Multilateral Institution
d) Both (a) and (c)

$$
\text { Ver-D } 2 \text { of } 4
$$

17. Powers, authority and responsibilities of Municipalities have been provided under
a) Article 243 N
b) Article 243 W
c) Article 243 M
d) None of these
18. Which among the following is considered as the training ground for the development of democratic institutions?
a) Nagar Panchayats
b) Municipalities
c) Municipal Corporations
d) Gram Panchayats
19. The ground for the impeachment of President is
a) Failure to follow the advice given by the Prime Minister
b) Unable to discharge his duties due to old age
c) Violation of the constitution
d) Misbehaviour with foreign dignitaries.
20. The size of the Union council of ministers including Prime Minister shall not be more than
\qquad percent of the members strength of Lok Sabha.
a) 10
b) 15
c) 18
d) 20
21. The total number of elected members from various states in Lok Sabha are
a) 530
b) 540
c) 550
d) 500
22. This is not the jurisdiction of the Supreme Court.
a) Original Jurisdiction
b) Emergency Jurisdiction
c) Appellate Jurisdiction
d) Advisory Jurisdiction.
23. Collective responsibility of the State Council of Ministers means, all Ministers are collectively responsible to the
a) Chief Minister
b) Governor
c) State Legislative Council
d) State Legislative Assembly.
24. The Governor may resign his office by writing to
a) The Prime Minister
b) The President
c) The Chief Justice of High Court
d) The Chief Minister of the State
25. The constitution of India derives its authority from the
a) Parliament of India
b) Supreme Court of India
c) People of India
d) Constituent Assembly of India
26. It is not the objective enshrined in the preamble
a) Equality of status
b) Secure shelter and proper livelihood to all
c) Liberty of thought and expression
d) Social, economic and political justice
27. Right of decent environment includes
a) Freedom to reside in any part of India.
b) Right to religion
c) Right to equal protection of law.
d) Right to life.
28. The Emergency provisions incorporated in the Constitution of India were influenced by
the Constitution of
a) German Reich
b) U.S.A
c) Russia
d) Canada
29. The Directive Principles of State Policy directs the State to secure to all workers
a) Minimum wages
b) Fair wages
c) Living wages
d) Standard wages
30. This is not a fundamental duty.
a) To defend the country
b) To abjure violence
c) To uphold and protect sovereignty of India
d) To make scientific improvement

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Additional Mathematics - I

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-

1 a. Prove that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{\mathrm{n} \theta}{2}\right) \quad$ (08 Marks)
b. Express $\sqrt{3}+\mathrm{i}$ in the polar form and hence find its modulus and amplitude. (06 Marks)
c. Find the sine of the angle between vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-3 \hat{j}+2 \hat{k}$
(06 Marks)

OR

2 a. Express $\frac{3+4 \mathrm{i}}{3-4 \mathrm{i}}$ in the form $\mathrm{x}+\mathrm{iy}$.
(08 Marks)
b. If the vector $2 \hat{i}+\lambda \hat{j}+\hat{k}=0$ and $4 \hat{i}-2 \hat{j}-2 \hat{k}$ are perpendicular to each other, find λ.
(06 Marks)
c. Find λ, such that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}, 3 \hat{i}+\lambda \hat{j}+5 \hat{k}$ are coplanar.
(06 Marks)

Module-2

3 a. If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$
(08 Marks)
b. With usual notations, prove that $\tan \phi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$.
(06 Marks)
c. If $u=\log _{e} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(06 Marks)

OR

4 a. Using Maclaurin's series, expand $\tan x$ upto the term containing x^{5}. (08 Marks)
b. Find the pedal equation of $r=a(1-\cos \theta)$.
(06 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z$ and $w=2 z^{2}-x y$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(06 Marks)

Module-3

5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} d x$
(06 Marks)
c. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$
(06 Marks)

OR

6 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$
c. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$
(06 Marks)

Module-4

7 a. A particle moves along the curve $\mathrm{x}=2 \mathrm{t}^{2}, \mathrm{y}=\mathrm{t}^{2}-4 \mathrm{t}$ and $\mathrm{z}=3 \mathrm{t}-5$, where ' t ' is the time. Find its velocity and acceleration vectors and also magnitude of velocity and acceleration at $\mathrm{t}=1$.
(08 Marks)
b. In which direction of the directional derivative of $x^{2} y z^{3}$ is maximum at $(2,1,-1)$ and find the magnitude of this maximum.
c. Show that $\vec{F}=(y+z) \hat{i}+(x+z) \hat{j}+(x+y) \hat{k}$ is irrotational.
(06 Marks)

OR

8 a. If $\phi=x y^{2} z^{3}-x^{3} y^{2} z$, find $\nabla \phi$ and $|\nabla \phi|$ at $(1,-1,1)$.
(08 Marks)
b. If $\overrightarrow{\mathrm{F}}=(x+y+1) \hat{\mathrm{i}}+\hat{\mathrm{j}}-(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}}$, show that $\overrightarrow{\mathrm{F}} . \operatorname{Curl} \overrightarrow{\mathrm{F}}=0$.
(06 Marks)
c. If $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ represents the parametric equation of a curve, find the angle between the tangents at $t=1$ and $t=2$.
(06 Marks)

Module-5
9 a. Solve : $\left(x \tan \frac{y}{x}-\frac{y}{x} \sec ^{2} \frac{y}{x}\right) d x=x \sec ^{2} \frac{y}{x} d y$
(08 Marks)
b. Solve : $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
(06 Marks)
c. Solve : $\frac{d y}{d x}+\frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(06 Marks)

OR

10 a. Solve : $(3 y+2 x+4) d x-(4 x+6 y+5) d y=0$
(08 Marks)
b. Solve : $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
(06 Marks)
c. Solve : $(y \log y) d x+(x-\log y) d y=0$.
(06 Marks)

17KKM39
Question Paper Version ：

Third Semester B．E．Degree Examination，Dec．2018／Jan． 2019

（COMMON TO ALL BRANCHES）
Time： 2 hrs．］

గుอఔనాగెళง

 గురుతినుత్రుదు అభ్యథిణయు జటాబ్దారియూగిరుత్తదా

5．ఎల్లా లుత్తరగళస్ను నిఱుగి ఒదగిసెలాద ఓ．ఎం．ఆరా లుత్తర ङశ్రిశేయు
 గురుతు టూఠ๘బొలేు．

అ）సలూూజద సుస్థిత
బ）ఱ్రెలషుద రఱ్యుత

๘）చలితర శససు

2．＇ఒలిळ＇今త లురిదడి నిలబळుదల్లదాల，ఛరిळః్తి లురిదర＇నిలబరరద，घరి

అ）శెబణజ్ఞ
బ）ӊอఱురేત
モ）అల్ల山ుత్రుభు
む）బసెటణ్ణ

అ）అరిరినచుంటా
బ）అథణి
も）అ戸జలఱుర
డ）జాృళ్ళ గంల

4．＇శ్రిల సెంగిงళ్ళి రాయుణ్ణ＇యోைరు？
అ）అద్భుత భాఱణచార
బ）ఎందిషూగధరిగ శंలరిదబను

అ）戸ంळ
బ）ळరిळర
ъ）ฝొంచృల
డ）శిట్టిలా

6．＇चన్నడ శంస్మృయ ${ }^{\circ}$＇రిలతియూగిది ：
అ）బळురుอటియోూగిది
బ）बణణణరంజితదరగిది
₹）జిలపంతఱాగిది
๘）ฝొలలిన ఎల్లఖు

అ）స్టెట్ట్ట్యూరితి
బ）నెలర నిరుఃఱా
๖）તౌజన్య
๘）ฝొలలిన ఎల్లవు

8．సబిట＋ఆలయు＝సెబిఱాలయు，ఇల్లిరుఱ సెధధ ：
అ）సుबణణ సుంధి
బ）సెపణణ ధిలఖో సెంధి
₹）రలజయయงeగ సెంధి
డ）టృద్ధి సుంధి

9．＇టిర్ప దూనటత’＇ఎనస్ను థ్రతిఱ్రదిుుత్తదా？
అ）₹ందాఙార
బ）ఱుఃఝనంబిశீ
گ）నలఱురస్త్య－సెరిఱ్ణుత

అ）శீค○もణ
బ）బడోగణ
モ）उౌ०モ゙ణ
డ）ఱొండఠణ

అ）భూっత ซoల
బ）రాజయిงคగ ซ๐ల
ళ）యుఱుగండ ซరల
డ）రాळు చంల

అ）बణణદ జిత్ర
బ）థాయీర జిత్ర
₹）త్మల ఙిత్ర
๘）ఔలన జిత్ర

13．＇బిణ్ణి Шひ్బు＇बదద సెరియీూద అథణ：
అ）రెงట్టిగొ బొહ్ణా ळజ్బు

モ）ळరంగగళుฝ్రుదు
డ）రాగిఱుద్దిగొ బిద్ణ్

అ）నెంఱ్రదలయుగిళిగితలు ఱిగిలాగిరుఱ్చుు ఱుళిళయయ ఘానతి．
బ）ఱుళిళా మిలసెలాత
も）సెఱూనతేగంగి ఔళుటెళి
๘）శనసిన డుదుటె
15．శ్రిల＇బందాల నటలజో＇యీరరు？
అ）గులబగంદద సెంఘి సెంఠరరు
బ）బ్రిటిలరింద లుంబళి లడశదపరు
ఔ）बెజ్ర ब్యాథలరిగళు
๘）గణి ఛణి

అ）ఛ్వని సుంఱత్తు
బ）సంంయృฺజనొ
モ）నిదాలఃరన
๘）ఈంఠదరన

అ）ఆనె దంఠ సుగ్రळణ
బ）మాడ్ద్రగ చురిङు అధ్యయున

（ङ）कులి టిలశ घః

అ）बణలళర్రથు Шధ్ధి
బ）జอతిఁయుత゙
च）बొఢ నంబిశ
డ）ฝుळలత్మ గంంధిలజియుబెర దోల్యగళిగొ ఒదగిరుట అపస్థ్యున్ను
 యూைగిదా？
అ）ఎిడంబనొ
బ）నాటృ
₹）ভ్రులాస 千థన
๘）తంత్రజ్ఞ్య లాలున

అ）రిస్తు
బ）ఱలల్బత్త దిరిసు
モ）ळீงคణ゚กอరిモ์
๘）ఱిలలిన ఎల్లపు

అ）దు：ఎ
బ）నలిపు
モ）तెంతెంలఱ
๘）ఒలఱ్రు

అ) ذంత్రజ్ఞ్యన లలఖన
బ) ฝినితలద లాలున

డ) నంటఈ
23. శ్రిల టి.లంశోలర 'గుబ్బఙ్చిగండు' లలననదల్లి జింతిసిరుథుదు :
అ) భట్టంగిగళ బదుซు
బ) దిలనతియు బదుచు
₹) స్పుంతిశొయయ బదుశు
ఱ) అసదూనతీయు బదుచు
24. 'జన’ యీఠब లింగ

బ) யుల్లింగ
ऋ) అలింగ
డ) నఱుంనేలింగ

అ) ద.రా. బొలంద్రి
బ) శే.బి.ఱుట్టెల్ట

అ) $\cap 0$
బ) $ల$
モ) 2
๘) ६

అ) ధలరటాడద
బ) బొంగళงరిన
ఈ) నిసెగణద
డ్) బిళగంటియు
 ळొలళిద్దు:

అ) ములినాడు
బ) చరాబెళి
ఈ) మురుభృఱి
డ) దిృడ్యనగగర త్రుదిల

ఔ) భలఱణద చురితు తయూరరి

G3C5SGHEME

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Kannada Kali
 (COMMON TO ALLBRANCHES)

Time: 2 hrs .]

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries CNE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your amswer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalici.
5. Damaging/overwriting, use of whiteners on the OMR sheets are strictiy prollibited.

Note : Fill in the blank by translating the given English word to Kannada.
[From Questioli No: 1 to 5]

1. He :
a) NAnu
b) Neenu
c) Avanu
d) AvaLu
2. When

b) Yaawaga
a) Yaanu
c) Yelli
d) Yaake
3. Teacher:
a) HuDuga
b) Manushya
c) Shikshaka/ki
d) Shishya
4.

a) tarakari
c) tavaruru
b) takararu
d) tamota
5. Garden :--.--
a) Mane
b) Shaale
c) TooTa
d) Baagilu

Note : Substitute the words from the following each sentence in appropriate place [From Q No. 6 to 8]
6. naanu uu maaDu
a) HiaaDutitiв
b) maaDideya
c) maallisu
d) maaDi
Ver-A 1 of 3
7. Namma manege baa ?
a) Baruttiya
b) Bandi
c) BeDa
d) Baru
8. Nanna hattira Kutka.
a) KuLituko
b) K KODO
c) Kındru
d) None.

Nute: Write the English word for given Kannada word [Froneno. 9 to 12]
9. HaLe
a) New
b) Now
c) Not
d) Old
10. Kurci
a) Table
b) Book
c) Chair
d) Pen
11. GaNita
a) Physics 7
c) Mathematics
d) Biology
d) English
12. Shaale
a) Home
b) School
c) Office
d) Room.

Note: Fill in the blansefiopsing the right werdfrom the groumbelow :
13. nanage ninna sahavasa khanDitaa
a) BeDa
c) Ide
b) Beka
d) 111 a .

Note : Translate the following Kannada question into English.
[from question No. 14 to 15]
14. Niivu yaaru ?
b) what is this?
a) who is this?
d) what is there?
a) who are you?
15.

Idu Enu?

a) who is this?
b) what is this?
c) who are vale
d) what is there?

Note : Translate the following English words to Kannada [from Q Nब. 16 to 20]
16. Near
a) Swalpa
b) hattira
c) heege
d) hosa
17. Shop
a) AngaDi
b) dukan
c) kante
d) Mane.
18. See
a) NooDu
b) MaaDu
c) BiDu
d) IDu
19. Moon
a) candra
b) Surarya
c) Naksatr
d) Boomi
20. Child
a) Maanav
c) MahiLe
b) Magu
d) HeNNu

Note : Translate the Kannada word into English. [From Q No. 21 to 30]
21. Meenu
a) Animal
b) Fish
d) Owl
22. Nayee
a) Pig
c) Dog
b) Cow
d) Cat
23. Aat
a) Se
c) Go
b) Come
d) Play
24. Mana
a) Home
c) Pen
b) Sallool
d) Mind
25. Nanu
a) I
c) We
b) You
d) He
26. Maga
a) Fatller

C
b) Sister
c) Daugher
d) Son,
27. सaа
a) Go
b) Sit
d) Come
28. Kaagad
a) Chair
c) Mouce
b) Computer
d) Paper
29. Avanu
a) He
c) It
b) She
d) They
30. Aangla
a) Kannada
c) Marath
b) English
d) Urdu.

Ver-A 3 of 3

Ques on Paper Version : \mathbb{B}

Third Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Kannada Kali
(COMMON TO AELBRANCHES)
Time: 2 hrs.]
TMax. Marks: 30

INSTRUCTIONS TO THE CANDID ITES

1. Answer all the thirty questions, each question carries GNE mark.
2. Use only Black ball point pen for writing / dankening the circles.
3. For each question, after selecting your amswer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the $O M$ reets are strictly proltibited.

Note : Translate the following English words to Kannada [from Q No. 1 to 5]

1. Near
a) Swalpa
b) Hattira
c) heege
d) hosa
2. Shop
a) AngaDi
b) dukan
c) kante
d) Mané.
3. See
a) NooDu
a) $=\mathrm{BiDu}$
4) MaaDu
(1) Du
4. Moon
a) :andra
c) Naksatna
b) Suurya
d) Boomi
5. Child
a) Maanava
b) Magu
c) MahiLe
d) HeNNu

Note : Write the Engfish word for given Kannada word [From Q No. 6 to 9]
6. HaLe
a) New
b) Now
c) Not
d) Old

